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Abstract. The ionic Hubbard model on a cubic lattice is investigated using analytical approximations, the
DMFT and Wilson’s renormalization group for the charge excitation spectrum. Near the Mott insulating
regime, where the Hubbard repulsion starts to dominate all energies, the formation of correlated bands is
described. The corresponding partial spectral weights and local densities of states show the characteristic
features, of a hybridized-band structure as appropriate for the regime at small U, which at half-filling is
known as a band insulator. In particular, a narrow charge gap is obtained at half-filling, and the distribution
of spectral quasi-particle weight reflects the fundamental hybridization mechanism of the model.

PACS. 71.27.4a Strongly correlated electron systems; heavy fermions — 71.10.Fd Lattice fermion models
(Hubbard model, etc.) — 71.10.+h Metal-insulator transitions and other electronic transitions

1 Introduction

Investigations of the ionic Hubbard model have led to
an ongoing debate about different types of phases with
and without broken symmetries and transitions between
them [1,2]. Reliable information has so far been obtained
mainly for the one-dimensional case, where Quantum
Monte Carlo methods [3] or the density matrix renor-
malization group [4] are applicable. From these it became
clear, that a site dependent variation of atomic energies
can induce critical behaviour and long-ranged correlations
which are absent in the homogeneous Hubbard model.
This simple version of the model in one dimension and
for the particularly interesting case of half-filling is a cor-
related Mott insulator for all values U > 0 of the local
Coulomb repulsion, with a gap for charge excitations but
none for spin excitations. Its critical bond-bond correla-
tions apparently freeze out at low 7' in a parameter range
U, < U < Uy, when the model is chosen ionic. For U
above U; spin-spin correlations seem to dominate, so that
in a regime, where U is sufficiently larger than the local
energy variation, the same type of Mott insulating phase
is approached as in the nonionic model.

The homogeneous Hubbard model in higher dimen-
sions, namely d = 3, likewise shows an interesting phase
diagram, which e.g. was calculated in the framework of
dynamical mean field theory [5]. Apart from regions pos-
sibly destabilized by phase separation, magnetic phases
prevail for large values of U near half-filling, whereas upon
doping the Mott insulator in form of a correlated para-

a

e-mail: torben@fkp.tu-darmstadt.de

magnet is increasingly stabilized. Studying the param-
agnetic state can serve as a good starting point even in
the regime, where the model develops magnetic order. It
contains essential information about one particle excita-
tions and their residual interactions. In particular, when
the low lying quasi-particles form well defined bands, one
may possibly apply concepts known from the theory of
weak band magnetism and from Stoner theory and thus
describe the magnetic phase in terms of exchange split-
tings of heavy quasi-particle bands, at least near the phase
transition line [6,14]. It is therefore desirable to inves-
tigate a correlated paramagnetic state for the Hubbard
model at intermediate U and small ioniticity, where for-
mation of low lying quasi-particle bands can be expected
via an interplay of local correlations and inhomogeneous
local energies. We will thus concentrate on one-particle
excitations in a Fermi liquid phase and study the corre-
sponding spectral functions via appropriate many-body
techniques. Work on possible magnetic instabilities in the
correlated bands is in progress.

In the regime near the metal insulator transition,
where U becomes comparable with the bandwidth as de-
rived from nearest-neighbour transfer, the Hubbard model
near half-filling shares an important feature with the
Anderson lattice model: Bands of heavy quasiparticles
with long lifetimes form at low temperatures. Although
in both cases this process is driven by the strong local
interactions and involves complicated many-body correla-
tions, some features of the quasi-particle band structure
seem to be linked to properties already inherent in the
one-body terms of the Hamiltonian. This applies e.g. to
the volume of the Fermi surface due to Luttingers theorem
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in the Fermi liquid state, but even more detailed structure
may be preserved as can be inferred from existing work on
these models [6,7,9,11]. Particularly intriguing is the case
of the spectral composition of quasi-particles at different
wavenumbers, which one could expect to be largely deter-
mined by the structure and symmetry of the fundamental
hybridization terms of these models. We will show that
indeed this also occurs in the ionic Hubbard model.

The motivation to link a study of the ionic Hubbard
model to results for the Anderson lattice is twofold: As
will be discussed in the following, ionicity of the Hubbard
model causes similarities concerning the Brillouin zone
and the band structure. Furthermore, new features to be
expected due to these similarities require a certain stan-
dard of many-body techniques, a lecture which was orig-
inally learned in connection with the Anderson lattice.
Application of the Friedel sum rule and of the Luttinger
theorem [12] to the Anderson lattice model sheds some
light on the density of states (DOS) in the region of low
lying quasi-particles [13]. In particular for one conduction
band and two electrons per site the noninteracting version
of the model has a hybridization gap at the Fermi energy,
and the Fermi surface coincides with the boundary of the
first Brillouin zone, a situation which should be preserved
when interactions are included. More generally, one may
argue that a coherent action of the Kondo effect should
lead to a gap at the energetic position where the many
body resonances form on each lattice site. Due to Friedels
sum rule it will depend on the localized charge whether
this position is near the Fermi energy and thus leads to a
charge excitation gap. Indeed, many-body calculations us-
ing various techniques have demonstrated that a picture of
hybridized quasi- particle bands is an appropriate descrip-
tion of the low temperature regime of this model [14-18].

The Hubbard model likewise contains interactions and
hybridization terms, the latter usually being addressed as
transfers to nearest neighbours. The noninteracting ver-
sion gives one simple tight binding conduction band, and
the generic case puts the Fermi level somewhere near the
band center. Correspondingly, the Fermi surface lies well
inside the first Brillouin zone and a gap is not expected in
the interacting case, too. The situation can change dras-
tically when an ionic Hubbard model is considered. For
a bipartite, simple cubic lattice with local one particle
energies differing between the two sublattices, the first
Brillouin zone is halfed, and with one electron per site the
Fermi surface coincides with the new, smaller zone bound-
ary. Then it can again be expected that the symmetry-
breaking effective field produces enough Bragg scattering
to lift the degeneracy at the zone boundary and thus leads
to a gap like in the Anderson lattice with two electrons per
site. We would therefore expect on the basis of this sim-
ilarity that at least near half-filling quasi-particle bands
form at low T, which reveal the underlying hybridization
mechanism. In addition, it would be interesting to find
out, whether the wave vector dependence of the corre-
sponding matrix elements is preserved in the structure of
quasi-particles.

This expectation, in fact, is supported by a theoreti-
cal approach, which has proven extremely useful for such
models with dominant local interactions. The approach
rests upon the picture of effective sites [14], which react
to a surrounding medium which in turn is formed by these
same local objects. Links between them are established via
the same elementary transfer processes which lead to band
formation via tight binding of noninteracting electrons.
Scattering of quasi-particles by the effective sites thus re-
flects in lowest order just the k-dependence of these hy-
bridization matrix elements, whereas the important part
of the selfenergy remains local, i.e. k-independent. Quite
a long line of approximations have been formulated along
these lines, from the ATA [15] and the Renormalized Band
Theory [16] to the XNCA [17] and the Dynamical Mean
field Theory (DMFT) [18], which has become very popu-
lar. It possesses a sound justification and has formed the
basis of extensive studies of Hubbard and Anderson mod-
els [9]. Generally, quasi-particle bands of the type outlined
above are derived with these methods supporting our view
and furnishing a good prospect for generalizations e.g. to
the ionic Hubbard model.

Early approaches to the Anderson lattice model like
the ATA and the LNCA used simplified versions of the
Non-Crossing Approximation (NCA) at finite U for the
calculation of scattering processes by the effective sites.
They clearly pointed to a quasi-particle band structure
with a hybridization gap. A more consistent description of
the effective medium, as contained in the XNCA, put this
in doubt for a while, because subtle cancellations between
local and nonlocal contributions to the selfenergy do not
occur in the right way due to shortcomings of the NCA.
When combined with a better local method the selfconsis-
tency cycle of the XNCA produces the gap, too. In com-
bination e.g. with the Numerical Renormaliztion Group
(NRG) [19] this has become a reliable tool, at least for
low temperatures and excitation energies. The simplified
NCA, as an analytical tool, can be expected to become
still more useful here, when an extended or full version is
manageable in numerical calculations. In connection with
the Hubbard model this conceptual frame is known as
the Dynamical Mean Field Theory (DMFT) and will be
used for the essential calculations in Section 3 of this pa-
per. Since less ambitious approximations in the spirit of
Hubbard I or with analytical impurity solvers like SNCA
in the DMFT-cycle are helpful to understand the initial
stages of correlation effects and to span Luttinger’s sce-
nario from the noninteracting to the fully interacting case,
we first give some elementary calculations demonstrating
rough overall features of the expected hybridized band
structure. The reader mainly interested in the correct fi-
nal form of the results should proceed to the second half
of Section 3.

In the following Section 2 we will introduce our model
Hamiltonian and discuss shortly the techniques used to
solve the model. The transition from the energy levels
of isolated ions towards the fully developed picture of
correlated quasi-particle bands will be performed in two
steps: At first, it is instructive to study the splitted bands
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furnished by a generalized Hubbard I-approximation,
called Free Theory in the following for brevity [33], which
neglects all two particle correlations except for the purely
local ones. It allows for a discussion of partial densities
of states (DOS), interaction — and hybridization — in-
duced band splittings and van Hove singularities in the
absence of lifetime effects. Section 3 proceeds to a gen-
eralized DMFT-scheme, which includes the complete set
of local correlations and is self-consistent on the lattice.
Calculations are carried out with an analytical impurity
solver, a simplified version of the finite U - NCA [20], and
alternatively with the NRG. Whereas the former allows
for a qualitative study of lifetime effects and is particularly
useful at higher excitation energies, a clear cut picture of
hybridization effects in the region of the many-body reso-
nance is only achieved with the latter. The final Section 4
contains a short discussion and concluding remarks about
future perspectives.

2 The bipartite Hubbard model
and correlated bands

We build our model with two sorts of s-shells with one
particle energies €4, = €4 + A and local Colomb ma-
trix elements Uy, Up. Each of them is placed onto one
sublattice L 4o, Lp of a three-dimensional simple cubic lat-
tice, so that the nearest neighbours of one sort belong to
the other. The Hamiltonian is:

H=H,+Hp+ Hsp with

Hu = Z (Z Evjo + Uu”ujT”ujl)

jeL, o

= HISO) + UVZ NujtNuj| (V = AvB)v

J
Hap =t Z Z a;'_abgg + h.c.

jeLa feLpn.N.of j

(1)

We have introduced the local occupation operators
NAjo = aj'gajg and npy, = bZ, by for sites on each sublat-
tice and absorbed the (common) chemical potential into
the one particle energies. A scheme of the resulting ener-
gies of local shells is shown in Figure 1, which also gives
an impression of the energy regime we have in mind when
the indicated position of the Fermi level and the zeroth
order bandwidths are recognized.

This atomic limit is described by the Hamiltonian
H, + Hp. If the transfer term is added instead of the
interactions, i.e. when

HO = HY + HY + Hap (2)
is considered, a picture of hybridized tight binding bands
for noninteracting electrons emerges, which is easily vi-
sualized: Assuming first A = 0, the single tight binding
band of a homogeneous (¢4 = ep) lattice is folded back
corresponding to a halfing of the Brillouin zone. The ef-
fect of A then shifts the remaining original and backfolded
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Fig. 1. Scheme of the local shells and the energy regime used
for the bipartite Hubbard model. The expected bandwidth is
indicated by the vertical delimeters. The Fermi level lies well
separated between the lower and upper bands.

pieces apart, producing gaps due to Bragg-scattering be-
tween the boundaries of the new reduced zone. Figure 2
gives an impression of this band structure, using a single

cosine for the dispersion function Ef(o) = 2tcos(ka) (a =
lattice constant,t < 0) as appropriate for one dimension.

Shown are the spikes corresponding to the partial DOS

(w+1id) (pp analogous)

3)

ke

1
palk,w) = —;Im Gt ot

derived separately for excitations on each sublattice.

It is easy to see (e.g. perturbatively with respect to ¢
or with the equation of motion method) that the Greens
functions appearing here are given by

Gz, () = |GV ()7 = (276G (2)

(G, bt analogous),

(4)

where the counterparts for the noninteracting atomic limit
have to be inserted, i.e.

Gf) (2) =[z—ea]! (Gg) analogous) . (5)

Whereas the added spectral weight p = pa + pp would
simply exhibit two d-spikes with weight % at the energies
of the upper and lower band for each fixed value of crystal

momentum k and spin o, the distribution of the partial
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Fig. 2. Tight-binding approximation of the one dimensional
partial DOS for the A and B sublattice.

spectral weights is more interesting, following

61({+))

+< (k )6(w o)

mmm:XWMﬂ@f

with ¢ =
A2+ (0))2
S 1 A2 )
o 5 €atep =t + (2e; . (6)

For pp one has to exchange Cgr (:A , B = (1(4”. The
gap at the zone boundary equals that of the local states,

A2 4 (260)2 = A for k=42, and
at these two points the bands terminate in the local en-
ergies 51(( ) = =¢ep and sf(_) =¢ey for k= x4, inducing
complete repulsion of admixture from the corresponding
other state. Therefore the upper band has full B-weight at
the zone boundaries and less in the middle, whereas the A
weight goes to zero at the boundaries and grows towards
the middle of the Brillouin zone and the other way round
for the lower band. This simply reflects the shape of the
dispersion function 65(0), which is zero at the boundaries
and has maximal absolute value |2¢| in the zone center,
since this function also gives the effective hybridization of
electrons with momentum k in transfer processes between
a site and all of its nearest neighbours.

It is worthwhile to collect these simple facts, since the
effects are relevant also for the more refined band structure
derived with better approximations. A generalization of
the Hubbard I-approximation, named Free Theory, can

ig. et —el) =

pB(k’ UJ)
0.6

Fig. 3. Partial one dimensional DOS of the A and the B sub-
lattice from Free Theory calculations for e = —2,ep = —1.66,
Ua = Up = 4. Due to the energy difference A = egp — €4 each
Hubbard band splits in two subbands with hybridization gaps
of width A.

be obtained by simply substituting the Greens functions
of the isolated interacting local shells, i.e.

1) 1(41) ,(42 : (1)
G, (z) = e — (GB analogous) )
(7)
for the G 5 given by equation (5) in the explicit expres-

sions (4) The resulting bands are derived from a poly-
nomial of fourth order, the zeroes of which are easily de-
termined numerically, as well as the corresponding partial
spectral weights, too. Here we give the explicit dispersion
for the special case Uy = UB = U and T = 0 where

1(41) = 1(42) = g) = é) = in the situation depicted in
Figure 1:

1
sl((m)§<€A+€B+U

+ \/A2+U2+(25§(0))2 - 2\/(AU)2+(U5§(O))2+(E§(O))4> :

ith
W m m=2
m m = 4=(—, +). (8)
The band structure is shown in Figure 3, where the spec-
tral weights are again resolved in contribution from sub-
lattices A and B. Throughout the paper, all energies will
be given in units of the hopping parameter |t|.
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Fig. 4. Comparison of the three dimensional local DOS
obtained from Free Theory (solid line) and DMFT+SNCA
(dashed line) for e4 = —2.07, eg = —1.89, Ua = Up = 3.96,
3 = 20.

One recognizes the same distribution of weight as in
the noninteracting case before. The important new feature
occurring in the Free Theory is the interaction-induced
additional splitting of the hybridized bandstructure, for-
merly seen in Figure 2, which is in complete agreement
with the phenomenon known from Hubbards own study:
Each of the bands splits in two subbands of approximately
half the spectral weight, and differing in energy by roughly
the Coulomb repulsion. Interesting is also the correspond-
ing local DOS, which is obtained via summation over all k.
A glance at the upcoming Figure 4 shows typical van Hove
singularities at the bandedges. In the present bipartite
case they may always be attributed to one of the sub-
lattices only, since for the other sublattices the spectral
weight vanishes at the corresponding energies. Conclud-
ing this section, we comment shortly on the validity of
equation (4) and similar generalizations of the Hubbard I-
approximation. The essential point is the neglect of all
nonlocal correlations and thus the restriction to the most
important local interaction effect. This is contained in the
fractional form of the Greens function (7), which is eas-
ily generalized to a more complicated local level structure.
Using this Greens function, the approximation simply pro-
ceeds as in the noninteracting case, involves the Wick the-
orem and all benefits thereof. This may also be obtained
from a decoupling in equations of motion.

3 Selfconistent approximations for effective
sites and low lying quasi-particle states

Corrections to the Free Theory can be organized perturba-
tively with help of local cumulant interactions serving as
vertices. In order to tackle the infrared problem connected
with degeneracies in the metallic regime resummations to
infinite order are necessary [21,22]. The well established
strategy of DMFT uses the concept of effective sites, self-
consistently coupled to an environment, which is built up
by transferring electrons between these same objects. This
is accomplished by using an appropriately highly devel-
oped technique for an impurity problem and by feeding it
with effective propagators for electrons leaving and enter-
ing and being scattered in between by other effective sites
of the lattice. It is well known how this concept is formally
implemented in an elegant manner as a small set of equa-
tions [17,18]; we will just state here its generalisation to
the present situation with a few comments concerning the
role of the quantities appearing.

The two types of lattice sites experience different forms
of local one-particle excitation processes, which as before
are described via a Greens function in the form

+(2)== Z Gakaga:,_., (z) (Gp analogous).

k

9)
For a description of the propagation process inherent in
the k-dependent Greens function under the sum a division
into free transfer processes and effective local parts is help-
ful. This enables one to apply the same reasoning as was
used to derive equation (4) and thus gives an analogous
result here:

Ga(2)=G

o = [0~ ]

(G, .+ analogous). (10)

bko Ay,

The effective local Greens functions G4 and G contain
corrections for processes, where particles leave and en-
ter the site along an irreducible loop of transfers. Since
such loops on the one hand contribute to the pseudolocal
Greens functions G4 and Gp and on the other are pro-
duced by the free random walk through the lattice leading
to the result equation (10), these corrections are neces-
sary to avoid overcounting. They are collected in quanti-
ties T'a(z) and Tp(z), which enter in the following way:

Ga(2)™'=Ga(2) ' +Ta(z) (Gp(z) analogous), (11)
where G 4 results from equation (9). In this way a closed
selfconsistency cycle is obtained, in the present form
with coupled A- and B-sublattices, which has to be sup-
plemented as mentioned by an impurity theory for G4
and Gp. In the framework of the DMFT [8,9,18], the
quantities T4 /B(z) are usually called the dynamical Weiss
fields of the theory. Recently it was pointed out [10]
that they determine how much the effective local inverse
Greens function G 4, p(2)7! has to be deformed to repro-
duce the k-summed lattice Greens function G4, p-
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Analytical impurity solvers have been derived from the
noncrossing approximation (NCA) of the Anderson impu-
rity model [23]. Their virtues and shortcomings are well
known [24]. A full version of the NCA for finite Coulomb
repulsion has been presented long ago [20], but for a quick
orientation or for complicated applications usually a sim-
plified version, the SNCA is employed, which needs much
less numerical effort. Also improvements of the full NCA
have been presented [25,26], which however consume even
more time and effort. The SNCA, and to a lesser degree
the full NCA, loose their reliability in the regime of very
low temperatures and excitation energies. They describe,
however, rather well the overall structure and can be used
down to temperatures and excitation energies of the or-
der of the many-body scale, connected with the infrared
problem, and somewhat below. In particular the full NCA
reproduces this nonperturbative scale with quantitative
accuracy [20]. We have employed here the SNCA in order
to obtain a first test of the selfconsistency cycle outlined
in equations (9) to (11). Thereby, G4 and Gp are cal-
culated using the loops TA and TB as input, afterwards
one obtains G 4 and G g using (11) with these G4 and T4,
likewise for G, and finally a new G4 and Gp is produced
with (10) inserted into (9). These G4 and Gp give rise to
new loop-expressions TA and TB, again via equation (11),
which in turn allow for a new impurity calculation of G 4
and Gp.

In Figure 4 results of this iterative procedure are shown
and compared to the corresponding quantity calculated
in the Free Theory Figure 4c contains the complete lo-
cal DOS;

pap(w) = —%Im[GA(w +10) + Gp(w +id)]

1

§[PA(W) + pp(w)].

(12)

and compares it to the corresponding quantity calculated
in the Free Theory.

It is surprising, how much lifetime effects, i.e. the
broadening of DOS peaks at fixed k, smear out the promi-
nent features of the DOS, which have been discussed in
Section 2. The hybridization gaps now only show up as
shallow dips and the van Hove singularities have disap-
peared. The prospect, however, to obtain hybridization-
induced gaps in the narrow quasi-particle peak around the
Fermi level w = 0 are unbroken: The Fermi liquid state
guarantees divergent lifetimes for T, w — 0. It seems thus
encouraging, that the calculation indeed shows some pre-
cursor of splitting near w = 0, which is more pronounced
in the partial DOS shown in Figures 4a and b. Unfortu-
nately, our selfconcistency cycle with the simplified SNCA
tends to become unstable in the most interesting region
and does not allow for a more precise investigation of this
interesting effect. One should notice from an inspection
of Figure 4, however, that some of the characteristic fea-
tures of the bipartite lattice, which have been discussed
before, survive even in such a locally complete calcula-
tion, although only in a smoothed form.
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Fig. 5. Three dimensional DOS from DMFT+NRG for
€a=—207, eg = —1.89, Us = Ugp = 3.96, T — 0. The
NRG treatment of the ionic Hubbard model shows a clear
quasi-particle hybridization gap at the Fermi level. For the
NRG we used A = 2.3 as discretization parameter [27] and
kept Ns: = 700 states for each NRG iteration.

In order to answer reliably the question for hybridiza-
tion structure in the low energy quasi-particle domain we
have finally employed Wilsons renormalization group as
the impurity solver in the selfconsistency cycle [27,28,30]
defined above. In the meantime, this has become a stan-
dard procedure, which essentially improves on the low
energy-low temperature results, but due to its logarithmic
partition of excitation energies around w = 0 tends to sup-
press important DOS structure elsewhere [29]. This latter
statement is substantiated in Figure 5, viewing the smooth
and featureless main resonances near €4 and €4 + Uy,
likewise for B. At the Fermi level w = 0, on the other
hand, this T' = 0 calculation reveals a clear and com-
plete hybridization gap in the quasi-particle DOS at the
lowest excitation energies. Although the present calcula-
tion uses parameter values Uy = Up = 3.96,e4 = —2.07,
ep = —1.89 near the Mott transition, we expect at least
for half-filling this gap to exist at the Fermi level for all
values of U in the Fermi-liquid state, as we have motivated
above with reference to the Luttinger theorem.

We have suggested above, that the quasi-particle states
are shaped by hybridization in a similar way as the
Hubbard-split bands of width W « ¢ in the high energy
region. It would therefore be consistent, if the size of this
gap compared to the one seen e.g. in Figure 3 is scaled
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down roughly by the same factor of v = T*/W as the
whole band structure. T is a characteristic low energy
scale caused by the strong correlations, which should be
roughly of the same magnitude as the enhanced Kondo
scale of the nonionic version of the model. As was pointed
out in Section 2 the gap in Free Theory equals A, so that
a quasi-particle gap size A* of order v - A can be expected.
Whereas this order of magnitude actually is found in our
calculation, and A* clearly vanishes when A goes to zero
and increases with growing A, a strict proportionality is
not to be expected. Lifetime effects in the DMFT calcula-
tion start to smear features in the DOS when the distance
to the Fermi level becomes larger and tend to narrow a
gap situated there. In addition, the existence of a quasi-
particle gap causes a change in the scale T* as compared
with the nonionic case. It would, however, be interesting
to study the variation of A* near the metal-insulator tran-
sition or away from half-filling, although one has to expect
numerical difficulties. A further similarity concerns the
distribution of spectral weight in the partial DOS, which
formerly was discussed in connection with the structures
at higher energies. Even without k-resolution the spectral
weight for the A-lattice near w = 0 in Figures ba and b
resembles the asymmetric shape observed near the hy-
bridization gaps at higher excitation energy in Figures 4a
and b, and also the k-dependence reveals strong similar-
ities. This is demonstrated in Figure 6, where the upper
part gives an overall view of the total weight pap(k,w)
and the two lower parts magnify the region very near to
the Fermi level w = 0.

Regarding the regions at large excitation energies w in
the upper figure, considerable broadening and spreading
of the resonances is observed compared to those of the
Free Theory, see e.g. Figure 3. Moreover, band splitting
due to the ionic field A = e — €4 is not visible any-
more and it seems that parts of the broadened band struc-
ture even have disappeared. Although the NRG treatment
looses much accuracy away from the Fermi level due to the
logarithmic discretization of energies, we attribute these
findings to the dominance of scattering processes in this
region due to the blocking effect on the effective sites.
For the ionic version of the Hubbard model this seems
to be of particular importance. Without the ionic field A
one may define the positions wy of broadened bands as
usual [12] via the disappearance of the real part in the de-
nominator of one particle Greens functions, i.e. solving for

Re Clwi+i0) ' — 1 = wic— (ek + Y4 Re E(wk)) ~0in
the Hubbard model, where we have separated a Hartree-
part % from the selfenergy of the effective Greens func-
tion G(z) and explicitly used its k-independence in the
effective site picture. Although Re X(w + i6) bears a
strong w-dependence, generally three solutions appear for
the Hubbard model in the Fermi liquid regime which rep-
resent the two original U-split bands and the low-lying
quasi-particle band. Level broadening occurs separately
via Im¥(wk+id). For the ionic Hubbard model the denom-
inator of the Greens functions [10] mixes contributions of
the two kinds of effective sites in a way that stresses the

PAB (k’ “))

PR 01 o 01 02

Fig. 6. [111] k resolved DMFT+NRG spectra with the same
parameters as in Figure 5. The top picture shows the whole
spectrum for the combined DOS while the other two pictures
show the partial DOS for the A and B sublattice for the region
around the quasiparticle bands at the Fermi level.

importance of scattering even more, i.e. one has to solve

wk —ea — Re i‘A(wk) wkfstgfﬂ?eEB(wk)
2

—ImX 4 (wi + i0) - ImZ 5 (wy + i6) — 2 = 0. (13)
Roughly speaking, ImX 4 (wy +i6) ~ ImXp(wi +i6) ~ Ae
is a large energy shift for wy of order e4,e4 + U, so that
only the solutions, which are maximally removed from the
Fermi level tend to remain in the high energy region after
inclusion of the imaginary part of the self energies. In the
low energy region, on the other hand, this effect is small-
est near the Fermi level, which around half-filling makes
the zone boundaries favourable for the existence of well
defined quasi-particle bands. Thus we observe more pro-
nounced resonances there as shown in the two lower parts
of Figure 6.

Apparently, the dominant parts of the quasi-particle
bands reproduce the distribution of main spectral weight
on the respective sublattice. The parts on the opposite side
of the Fermi level, on the other hand, are shaped by ad-
mixtures, e.g. the spectral weight at the zone boundaries
does not vanish anymore. Near the position of the ionic
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Fig. 7. Comparisons DOS obtained from DMFT with NRG
and NCA for a 3d simple cubic lattice. The insets show the
region around the Fermi level in greater detail. The parame-
ters used are the same as in Figure 5; for the NCA a finite
temperature 1/T = 3 = 20 was used. The NCA resolves much
better the high energy features of the spectra but is not able to
clearly resolve the quasiparticle hybridization gap as the NRG.

energies the NRG treatment combined with the effects
described before leads to a less detailed band structure.
This region is presumably described in a somewhat better
way by the NCA calculation, see e.g. Figure 7. Thus, our
expectations that fundamental hybridization mechanisms,
contained in the model, bear a relevance on the low lying
states with many-body character, is supported. We have
compiled SNCA and NRG results in our last Figure 7 in
order to provide an overall picture of the local DOS and
both of its sublattice contributions. This also serves to
underline our remarks about the usefulness of both calcu-
lational schemes in conjunction.

4 Conclusion

We have calculated correlated band structures of the ionic
Hubbard model for a region of intermediate local repul-
sion at and near half-filling. The quasi-particle bands of
low lying one-particle excitations show clear signatures of
the underlying transfer (“hybridization” ) mechanism con-
tained in the noninteracting part of the Hamiltonian, in
particular with respect to a charge excitation gap and the
distribution of spectral weight. We have motivated and

interpreted these findings with reference to the Luttinger
sum rule and to the dominantly local nature of the selfen-
ergy and have drawn some parallels to gap formation in
the Anderson lattice. Applying successively better approx-
imations we tried to elucidate the transformation from a
local ionic picture to essentially itinerant quasi-particle
degrees of freedom and the correspondence to an interme-
diate tight binding scenario.

Using the SNCA in the DMFT selfconsisting cycle gave
a good overall impression of the band structure and al-
lowed for some qualitative conclusions about the low lying
excitations. A satisfactory picture of the low energy region
at low temperatures was nevertheless only achieved by ap-
plication of the numerical renormalization group. Whether
a full or improved NCA would allow for a more analytical
approach and would lead to sensible results in this region,
too, is still to be demonstrated. Altogether, the scope of
controlling and understanding such calculations for com-
plicated systems with more ionic species and realistic p- or
d-shells, in the local approach or e.g. in the LDA-DMFT
scheme [11], has been widened and improved: Some fea-
tures of heavy quasi-particles seem definitely closely con-
nected to a noninteracting system. Since the whole field
at present rapidly develops to a stage, which is technically
very much involved, this insight should be useful for future
calculations.

As far as the existence of additional long ranged corre-
lations and corresponding order parameters are concerned,
a possible instability of the Fermi-liquid state considered
here towards magnetic order or towards phase separation
should be investigated. Like in the homogeneous Hubbard
model [31] knowledge of the one particle excitations is
an important prerequisite for this program. Work on two
particle properties within the DMFT approach, and in
particular on magnetic and charge susceptibilities [32],
is in progress. Without further calculations our results
also demonstrate an asymmetry of occupation numbers
na —np # 0 away from half-filling [2], as a consequence
of the asymmetric distribution of spectral densities, see
e.g. Figures 4a, b.
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This term also seems appropriate for the following reason:
The Hubbard I-approximation may be reformulated with
a perturbation expansion with respect to hopping or hy-
bridization to neighbours. In this frame the Free Theory
encorporates all processes not containing local cummulant
vertices and realizes as such a very general approximation
scheme in which Wicks theorem is formally applicable and
propagation through the lattice is free
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